
From event-driven to automotive

P J Łaszkowicz (2023) / omnifi.foundation



Introduction
From event-driven to automotive

• Where WebAssembly works, and where it often doesn’t

• Common constraints of full-stack WebAssembly

• Shifting architectural patterns with WebAssembly

• Tooling landscape

• What’s next



Going privacy-first



Going privacy-first
Key requirements

Build a modern web app that:

• Performs machine learning inference in-browser

• Uses web services as a progressive enhancement

• Re-uses models built for native mobile runtimes

• Trains the model with usage data



Going privacy-first
Key components

A modern privacy-first machine learning stack for the Web:

• PyTorch for model development

• TensorFlow.js for inference

• PySyft and PyGrid for federated learning

• Workbox for service workers

• HTML, CSS, and JavaScript



Building bridges
On the (Cloudflare) edge

When extending from the browser to the server, we: 

• Used modular packages and repositories 

• Determined shared objects using domain-driven design 

• Started with web services using Cloudflare Workers 

• Extended Kubernetes and the training pipeline



Going privacy-first
Federated data platform

Service gateway Worker
HTTP (REST) Zero IO

Custom model executor Training Grid

Kubeflow

PyTorch Training dataIngest

Train

Distribute

Aggregate

WebAssembly data 
transformation as a sidecar

Gateway and workers are 
WebAssembly modules with 
separate workers per service 
domain

No networking overhead for 
WebAssembly-to-WebAssembly 
communication.

Models are executed in the 
browser using Tensorflow-based 
SIMD and GPU-optimized 
WebAssembly.

Gateway is only public facing 
component and operates 
auth and policy as a sidecar



Going privacy-first
Retrospective

What we discovered whilst building a privacy-first web app:

• Browsers are great at rendering

• JavaScript is fast (enough)

• Apps don’t need to send data anywhere*



Isomorphic analytics



Isomorphic analytics
Key requirements

Replacing legacy products and services, that:

• Use JavaScript extensions on the server

• Use the JVM, Python, and R for analytics and statistical modelling

• Run on medical equipment and in-browser

• Have unknown connectivity capabilities



Taking WebAssembly for a Spin
Scaling services rapidly

Building from previous experiences, we:

• Used Spin from Fermyon on Nomad for some new services

• Built isomorphic analytical functions

• Extended data processing to in-process Kafka event-queues

• Extended Kubernetes clusters for critical infrastructure



In-process extensions
Moving data processing closer to the ingress 

Using RedPanda as a Kafka drop-in replacement enabled:

• Inline processing for a serverless delivery pattern, anywhere

• Reduced network overhead due to sidecar architecture

• High-performance data transformations at huge scale

• Re-useable domain code in data ingest and core services

• Applied regulatory and data governance on-queue



WebAssembly as critical infrastructure
Universal approach to policy control

Using Envoy as the core part of our proxy and service mesh we:

• Can apply a singular policy control across all clusters easily

• Can optimise traffic for our specific network stack

• Support closer integrations with hybrid environments

• Reuse API routing universally across various target environments

• Have more comprehensive control over critical infrastructure



Isomorphic analytics
Target on-premise architecture

Service cluster gateway HTTP service
HTTP (REST)

Web application

Analytics models are 
statistical algorithms built as 
WebAssembly modules

Analytics models

Event queue Domain worker
CloudEventCloudEvent

Analytics models

Service cluster ingress runs Envoy on 
Kubernetes with a custom WebAssembly 
HTTP extension supporting zero-trust 
service architecture.

Services are a mixed stack with 
Spin on Nomad and non-Spin 
WebAssembly-based services.

RedPanda runs a Kafka-compliant 
interface and allows in-process 
data transformation through 
WebAssembly modules.

Server-side analytics models are 
identical to the browser-based 
models enabling complete re-use.



Automotive and decentralized



Automotive and decentralized
Key requirements

An open ecosystem for the automotive industry, where:

• Data is private, and actionable by all

• Focus is on ecosystems, rather than products or platforms

• Highly computational workloads due to cryptography

• Logic and structure re-use is critical 



Smart contracts as extensions
Plugging into public networks

• Every contract is public and verifiable

• Contracts can never be updated or deleted

• Authorization and RBAC requires delegation

• Testing can be (more) complicated

• Accidents are (far more) damaging



Automotive and decentralized
Target architecture

Concordium nodes

Vehicle wallet

Wallets can communicate peer-to-
peer to verify information without 
sharing it using zero-knowledge 
proofs.

Contracts

Mobile wallet

Third-party services

Wallets communicate directly with the 
blockchain to share public events, 
enabling sidecar injection of events & 
actions between services.

Contracts can be shared between the 
blockchain and wallets (as shared 
code) to enable re-useable contracts to 
permeate through the ecosystem.



Going Fastly
(Another) edge compute

Running multiple projects on Fastly:

• Easy(-ish) to build on

• Performant with zero maintenance

• No (real) database or storage

• HTTP interface needed to be customised (in Rust)



Data on the edge
This was surprisingly di"cult

• Most edge environments lack any real database solution

• Edge databases are ambiguous regarding regulations

• Securing edge databases can be very difficult

• Supporting databases is complex

• TerminusDB is a promising edge-compliant knowledge graph

• SurrealDB is simple and (mostly) painless 



Naamio



A Solid foundation
Self-sovereign data spaces

Naamio is a distributed cloud project designed for humans:

• Everything open sourced under an ethical license

• Built on Solid to support powerful, personal data spaces

• Support for ActivityPub and the Fediverse

• Designed to be convenient and simple

• Supports privacy-preserving AI for zero compromise

• Fully extensible with WebAssembly modules

• Can run on commodity hardware at home or on the cloud



Naamio
Decentralized knowledge graphs

Web access controls

Cloud medical data

Web identity operates as a 
touchpoint for verifiable 
credentials.

Web identity

Local social data

Third-party apps

Data can be stored disparately across 
the world through different providers. 
Access control is managed universally.

Data can be stored locally, partially 
split and distributed, or in a traditional 
cloud provider. The service provides a 
singular approach to distributed data 
sources and modules.



A hot mesh
Self-sovereign data meshes

• Data lakes and meshes are expensive and difficult

• A lot of mediocre re-invention of the same blueprints

• Regulation and ethics mean data control is complex

• Data has meaning and should be useful to those creating it

• Anyone can build a web site, data spaces should be just as easy



Modern Data Mesh Revisited
Domain-Driven Service Development

WebAssembly modules

Core Service Runtime

CSR provides foundation for 
HTTP and gRPC traffic.

Each module can register a 
number of endpoints to be 
handled and event topics.

Domain Worker Runtime

WebAssembly modules

Domain workers operate via event queues 
splitting domain logic into topics.

Data StoresEvent Queue(s)

Modules have no visibility on 
storage methodology. Instead 
they focus on solving domain 
issues.

CloudEvents CloudEventsHTTP (REST)



Modern Data Mesh Revisited
Domain-Driven Service Development

CSR provides foundation for 
HTTP and gRPC traffic.

Domain Worker Runtime

WebAssembly modules

Domain workers operate via event queues 
splitting domain logic into topics.

Data StoresEvent Queue(s)

Modules have no visibility on 
storage methodology. Instead 
they focus on solving domain 
issues.

CloudEvents CloudEvents



Modern Data Mesh Revisited
Domain-Driven Service Development

CSR provides foundation for 
HTTP and gRPC traffic.

Domain Worker Runtime

WebAssembly modules

Domain workers operate via event queues 
splitting domain logic into topics.

Data StoresEvent Queue(s)

Modules have no visibility on 
storage methodology. Instead 
they focus on solving domain 
issues.

CloudEvents CloudEvents

Domain Worker RuntimeEvent Queue(s)
CloudEvents

Each new tool in the stack 
can be added using gRPC 
whilst reusing existing 
WebAssembly modules.



Modern Data Mesh Revisited
Domain-Driven Service Development

CSR provides foundation for 
HTTP and gRPC traffic.

Domain Worker Runtime

WebAssembly modules

Data StoresEvent Queue(s)

Modules have no visibility on 
storage methodology. Instead 
they focus on solving domain 
issues.

CloudEvents CloudEvents

Domain Worker RuntimeEvent Queue(s)
CloudEvents

Each new tool in the stack 
can be added using gRPC 
whilst reusing existing 
WebAssembly modules.

Data ingest



Habanero !
Introducing a modular WebAssembly auth project

• Simple and small Wasmtime-based framework for portable auth services

• Distributed open source runtime over gRPC for separation and scale

• OAuth2, OIDC, WebID, and IndieAuth as WebAssembly extensions

• SMTP and SMS-based magic links as WebAssembly extensions



Habanero !
Introducing a modular WebAssembly auth project

• Simple and small Wasmtime-based framework for portable auth services

• Distributed open source runtime over gRPC for separation and scale

• OAuth2, OIDC, WebID, and IndieAuth as WebAssembly extensions

• SMTP and SMS-based magic links as WebAssembly extensions

• Runs as a module on Fastly’s Edge Compute service



Thanks!

P J Łaszkowicz (2023) / @HelloFillip / fillip.pro


