
Database apps in WebAssembly

Michael Yuan, WasmEdge Maintainer
https://github.com/WasmEdge/WasmEdge

Most server-side
frameworks’ first killer app
is to babysit a database.

Think the Java Petstore and Ruby On Rails
scaffolding.

www.secondstate.io

1

2

3

4

Approaches for stateful WebAssembly functions

Use high-level host functions (many Wasm-based frameworks)

Embed Wasm in the database! (libsql, Single Store, Nebula Graph etc)

Reuse existing database clients and libraries

Reuse existing sidecar services

www.secondstate.io

Wasm embedded in a database?

https://github.com/libsql/libsql_bindgen/tree/master/examples/wasmedge

libsql > select classify(img_blob) from images where id = 1;
military uniform

https://github.com/libsql/libsql_bindgen/tree/master/examples/wasmedge

www.secondstate.io

Just use a database client you already know

https://github.com/WasmEdge/wasmedge-db-examples/

https://github.com/WasmEdge/wasmedge-db-examples/

Demo: A database backed
web service

https://github.com/second-state/microservice-rust-mysql

https://github.com/second-state/microservice-rust-mysql

www.secondstate.io

https://github.com/second-state/microservice-rust-mysql

http://www.youtube.com/watch?v=3VNmBuJPcIg
https://github.com/second-state/microservice-rust-mysql

www.secondstate.io

Light, fast and secure

www.secondstate.io

How it works

● WasmEdge WASI sockets
○ Support non-blocking sockets – crucial for data-intensive apps. It can handle

multiple HTTP requests and associated database queries concurrently.
○ Support DNS
○ Support TLS
○ Support domain sockets
○ Also compatible with the simpler WASI-socket spec

● Guest app SDKs
○ Fork tokio and MIO to add WasmEdge WASI target support
○ Maintain a tree of forks of database clients based on tokio_wasi
○ Create a Rust / Wasm SDK for Dapr API
○ Incorporate Rust functions to WasmEdge-QuickJS

Rust tokio-based clients
and JavaScript node.js

clients both work

www.secondstate.io

Databases supported

SQLx anna-rs

Socket support allows us to
go beyond databases

www.secondstate.io

Libraries and frameworks

● Rust
○ Tokio
○ MIO
○ hyper
○ reqwest
○ Mysql_async, postgres, sqlx
○ rskafka
○ redis, anna-rs
○ Dapr

● JavaScript
○ Node
○ fetch()
○ React SSR

www.secondstate.io

I want more!

● Dapr is a sidecar to provide common services to microservices
○ Eg. key-value store, relational database, noSQL datastores, secret vault, service

discovery, observability, pub/sub queues, actors etc.

● Deployment
○ Dapr sidecar and microservice are deployed in two containers in a single pod
○ They communicate via gRPC or HTTP
○ External KVS and databases can be accessed through Dapr API

● Currently supports 26 data stores!
○ https://docs.dapr.io/reference/components-reference/supported-state-stores/

● Dapr SDK for WasmEdge: https://github.com/second-state/dapr-sdk-wasi
● Example: https://github.com/second-state/dapr-wasm

https://docs.dapr.io/reference/components-reference/supported-state-stores/
https://github.com/second-state/dapr-sdk-wasi
https://github.com/second-state/dapr-wasm

www.secondstate.io

A future of component models

● All WasmEdge host functions are plugins
○ Even WASI will be a plugin
○ Supports alternative WASI implementations, such as WasmEdge sockets

● Plugins can be described by WAT files and be compatible with the
Component Model specification

● Check out WasmEdge’s Compoment Model tooling:
https://github.com/second-state/witc

https://github.com/second-state/witc

www.secondstate.io

One more thing

● ChatGPT enabled serverless functions
○ Receive events from anywhere on the web
○ Use live data to query ChatGPT
○ Execute the actions suggested by ChatGPT
○ Similar to “ChatGPT Plugins”

● Enabled by WasmEdge WASI sockets
○ Receive trigger events (e.g., incoming chat message) via HTTPS
○ Query OpenAI API via async HTTPS
○ Store and retrieve chat thread history in Redis
○ Execute actions in OpenAI responses via HTTPS

Examples with GPT4

A GitHub Issues bot

● Code:
https://github.com/flows-network/chatgpt-github-app

● Tutorial:
https://www.freecodecamp.org/news/create-a-serverless-chatgpt-app/

A telegram bot

● Code:
https://github.com/flows-network/telegram-gpt

https://github.com/flows-network/chatgpt-github-app
https://www.freecodecamp.org/news/create-a-serverless-chatgpt-app/
https://github.com/flows-network/telegram-gpt

Thanks！

